再谈量子计算与通讯的基本原理

再谈量子计算与通讯的基本原理


        2015613日,袁萌发表论文,全文如下:

     1935年5月4日,爱因斯坦在《纽约时代》发表署名文章,严厉批评量子力学“超距感应”(即”量子纠结“,Entanglement),他说:超距感应是“spooky action at a distance",意思是:超距感应是”魔鬼超距作用”。爱因斯坦认为,使用波函数描述物理真实是“not complete”(是不完备的)。

   什么是“超距感应”?我们设想:有两个人在异地玩扑克牌,他们之间没有任何联系。如果一人拿出黑桃A,远在异地的另一个人能够瞬间“感知”这张黑桃A的出现,那么,这就是“超距感应”现象。

   在量子力学中,有一条物理规律:如果两个粒子处于“相互关联状态”(薛定谔称其为“量子纠缠”),那么,测定一个粒子的状态就能够瞬间知道另一个粒子的状态,不论两个粒子相距多远。这种“粒子超距感应”现象是爱因斯坦首先发现的,他认为:粒子的“超距感应”现象(相互纠缠)违背了物理规律。

    实际上,爱因斯坦所批评的”粒子纠缠“现象(粒子超距感应)不是量子力学错了。1967年,美国物理学家John  Clauser(1942- )用实验证明了这种”粒子超距感应“现象的真实性。由此,国际物理学界最终接受了”粒子超距感应“效应,并且将这一基本原理应用到量子计算与通讯技术领域,成为当今世界最热门的研究方向之一。

  虽然”量子纠缠“效应是爱因斯坦的发现,但是,他反对错了。我深信,“量子纠缠”效应必将影响到我们人类生活的方方面面,特别是在量子计算与通讯技术方面的实际应用,值得期待。中国科大郭光灿院士带领的团队在”量子纠缠‘方面取得不少成果。过去,科技腐败耽误了我们不少时间。呜呼!

 

                                    袁萌 6月13日

   什么是量子纠缠?请见本文附件。

 

                              袁萌 陈启清 11月19日


附件:

 

量子纠缠

 

量子力学里,当几个粒子在彼此相互作用后,由于各个粒子所拥有的特性已综合成为整体性质,无法单独描述各个粒子的性质,只能描述整体系统的性质,则称这现象为量子缠结或量子纠缠(quantum entanglement)。量子纠缠是一种纯粹发生于量子系统的现象;在经典力学里,找不到类似的现象。

1935年,在普林斯顿高等研究院,爱因斯坦、博士后罗森、研究员波多尔斯基合作完成论文《物理实在的量子力学描述能否被认为是完备的?》,并且将这篇论文发表于5月份的《物理评论》。这是最早探讨量子力学理论对于强关联系统所做的反直觉预测的一篇论文。在这篇论文里,他们详细表述EPR佯谬,试图借着一个思想实验来论述量子力学的不完备性质。他们并没有更进一步研究量子纠缠的特性。 

薛定谔阅读完毕EPR论文之后,有很多心得感想,他用德文写了一封信给爱因斯坦,在这封信里,他最先使用了术语Verschränkung(他自己将之翻译为“纠缠”),这是为了要形容在EPR思想实验里,两个暂时耦合的粒子,不再耦合之后彼此之间仍旧维持的关联。不久之后,薛定谔发表了一篇重要论文,对于“量子纠缠”这术语给予定义,并且研究探索相关概念。薛定谔体会到这概念的重要性,他表明,量子纠缠不只是量子力学的某个很有意思的性质,而是量子力学的特征性质;量子纠缠在量子力学与经典思路之间做了一个完全切割。如同爱因斯坦一样,薛定谔对于量子纠缠的概念并不满意,因为量子纠缠似乎违反在相对论中对于信息传递所设定的速度极限。后来,爱因斯坦更讥讽量子纠缠为鬼魅般的超距作用。

EPR论文很显然地引起了众多物理学者的兴趣,启发他们探讨量子力学的基础理论。但是除了这方面以外,物理学者认为这论题与现代量子力学并没有什么牵扯,在之后很长一段时间,物理学术界并没有特别重视这论题,也没有发现EPR论文可能有什么重大瑕疵。EPR论文试图建立定域性隐变量理论来替代量子力学理论。1964年,约翰·贝尔提出论文表明,对于EPR思想实验,量子力学的预测明显地不同于定域性隐变量理论。概略而言,假若测量两个粒子分别沿着不同轴向的自旋,则量子力学得到的统计关联性结果比定域性隐变量理论要强很多,贝尔不等式定性地给出这差别,做实验应该可以侦测出这差别。因此,物理学者做了很多检试贝尔不等式的实验。

1972年,约翰·克劳泽与史达特·弗利曼(Stuart Freedman)首先完成这种检试实验。1982年,阿兰·阿斯佩的博士论文是以这种检试实验为题目。他们得到的实验结果符合量子力学的预测,不符合定域性隐变量理论的预测,因此证实定域性隐变量理论不成立。但是,每一个相关实验都存在有漏洞,这造成了实验的正确性遭到质疑,在作总结之前,还需要完成更多精确的实验。

这些年来,众多研究结果促成了应用这些超强关联来传递信息的可能性,从而导致了量子密码学的成功发展,最著名的有查理斯·贝内特(Charles Bennett)与吉勒·布拉萨(Gilles Brassard)发明的BB84协议、阿图尔·艾克特(Artur Eckert)发明的E91协议。

2017年6月16日,量子科学实验卫星墨子号首先成功实现,两个量子纠缠光子被分发到相距超过1200公里的距离后,仍可继续保持其量子纠缠的状态。

2018年4月25日,芬兰阿尔托大学教授麦卡﹒习岚帕(Mika Sillanpää)领导的实验团队成功地量子纠缠了两个独自震动的鼓膜。每个鼓膜的宽度只有15微米,约为头发的宽度,是由10个金属原子制成。通过超导微波电路,在接近绝对零度(-273.15摄氏度)下,两个鼓膜持续进行了约30分钟的互动。这实验演示出宏观的量子纠缠。

假设一个零自旋中性π介子衰变成一个电子与一个正电子。这两个衰变产物各自朝着相反方向移动。电子移动到区域A,在那里的观察者“爱丽丝”会观测电子沿着某特定轴向的自旋;正电子移动到区域B,在那里的观察者“鲍勃”也会观测正电子沿着同样轴向的自旋。在测量之前,这两个纠缠粒子共同形成了零自旋的“纠缠态”。


 量子纠缠度量

   量子纠缠与量子系统失序现象、量子信息丧失程度密切相关。量子纠缠越大,则子系统越失序,量子信息丧失越多;反之,量子纠缠越小,子系统越有序,量子信息丧失越少。因此,冯诺伊曼熵可以用来定量地描述量子纠缠,另外,还有其它种度量也可以定量地描述量子纠缠。对于两体复合系统,这些纠缠度量较常遵守的几个规则为

1.纠缠度量必须映射从密度算符至正实数。

2.假若整个复合系统不处于纠缠态,则纠缠度量必须为零。

3.对于纯态复合系统,纠缠度量必需约化为冯诺伊曼熵。

4.对于命定性的定域运算与经典通讯(local operation and classical communication)变换,纠缠度量不会增加。

对于两体纯态,只有冯诺伊曼熵能够量度量子纠缠,因为只有它能够满足某些量度量子纠缠必须遵守的判据。对于混合态,使用冯诺伊曼熵并不是能够量度量子纠缠的独有方法。

 

与不可分性

假设一个量子系统是由几个处于量子纠缠的子系统组成,而整体系统所具有的某种物理性质,子系统不能私自具有,这时,不能够对子系统给定这种物理性质,只能对整体系统给定这种物理性质,它具有“不可分性”。不可分性不一定与空间有关,处于同一区域的几个物理系统,只要彼此之间没有任何纠缠,则它们各自可拥有自己的物理性质。物理学者艾雪·佩雷斯(Asher Peres)给出不可分性的数学定义式,可以计算出整体系统到底具有可分性还是不可分性。假设整体系统具有不可分性,并且这不可分性与空间无关,则可将它的几个子系统分离至两个相隔遥远的区域,这动作凸显出不可分性与定域性的不同──虽然几个子系统分别处于两个相隔遥远的区域,仍旧不可将它们个别处理。在EPR佯谬里,由于两个粒子分别处于两个相隔遥远的区域,整体系统被认为具有可分性,但因量子纠缠,整体系统实际具有不可分性,整体系统所具有明确的自旋z分量,两个粒子各自都不具有。

 

应用

量子纠缠是一种物理资源,如同时间、能量、动量等等,能够萃取与转换。应用量子纠缠的机制于量子信息学,很多平常不可行的事务都可以达成:

·    量子密钥分发能够使通信双方共同拥有一个随机、安全的密钥,来加密和解密信息,从而保证通信安全。在量子密钥分发机制里,给定两个处于量子纠缠的粒子,假设通信双方各自接受到其中一个粒子,由于测量其中任意一个粒子会摧毁这对粒子的量子纠缠,任何窃听动作都会被通信双方侦测发觉。

·    密集编码(superdense coding)应用量子纠缠机制来传送信息,每两个经典位元的信息,只需要用到一个量子位元,这科技可以使传送效率加倍。

·    量子隐形传态应用先前发送点与接收点分享的两个量子纠缠子系统与一些经典通讯技术来传送量子态或量子信息(编码为量子态)从发送点至相隔遥远距离的接收点。

·    量子算法(quantum algorithm)的速度时常会胜过对应的经典算法很多。但是,在量子算法里,量子纠缠所扮演的角色,物理学者尚未达成共识。有些物理学者认为,量子纠缠对于量子算法的快速运算贡献很大,但是,只倚赖量子纠缠并无法达成快速运算。

·    量子计算机体系结构里,量子纠缠扮演了很重要的角色。例如,在单路量子计算机(one-way quantum computer)的方法里,必须先制备出一个多体纠缠态,通常是图形态(graph state)或簇态(cluster state),然后借着一系列的测量来计算出结果。

 

 


发表新评论